MMAT 5010 Linear Analysis (2020-21): Homework 1. Deadline: 25 Jan 2021

Important Notice:

- ♣ The answer paper must be submitted before the deadline.
- ♠ The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.
 - 1. Let X be a normed space. Show that X is a Banach space if and only if the unit sphere $S := \{x \in X : ||x|| = 1\}$ of X is complete, that is, every Cauchy sequence (x_n) in S has the limit in S.
 - 2. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be the normed spaces over the field \mathbb{K} . The direct sum of X and Y, write $X \oplus Y$, is defined by $X \oplus Y := \{(x,y) : x \in X, y \in Y\}$ under the addition and the scalar multiplication: (x,y) + (x',y') := (x+x',y+y') and t(x,y) := (tx,ty) for $(x,y); (x',y') \in X \oplus Y$ and $t \in \mathbb{K}$. For each $(x,y) \in X \oplus Y$, let

$$q(x,y) := ||x||_X + ||y||_Y.$$

- (a) Show that q is a norm function on $X \oplus Y$.
- (b) Show that $X \oplus Y$ is a Banach space under the norm q if and only if X and Y both are Banach spaces.

*** End ***